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ABSTRACT

Levy bas shown that a function devel-
aped by Acheiser/Zolotarev (LAZ) can yield
a lowvpass response with nne large reflec-
tinn ripple near dec. Rhondes and Alseyab
developed a novel method of obtaining
even/odd mode iwpedances of a syrmetrical
network and applied their technigue to low
pass filters with one transmission zero
(Tz) at infinity and all others at a spec-
ified stopband frequency.

This paper combines outstanding fea-
tures of these references to present a new
guasi-~lowpass, guasi-elliptic symetric
filter bhaving LAZ passband response and
finite stopband TZ's. Design advantages
are pointed out and filter realizations
are discussed.

INTRODUCTION

In the late 1800's, Zolotarev[1l] ex-
tended Chebyshev's work on equal-ripple

functions. In the 1920's, Acheiser [2]
further developed and reported upon Zolo-
tarev's work. 1In 1970, Levy [3,4] reviewed

these papers and applied them to approxi-
mation of quasi-lowpass filters baving
mixed lumped/distributed sections. Levy
collected, expounded on, and made the LAZ
approximating function more widely useful
to the engineering comrunity.

In a separate investigation, Rhodes
and Alseyab[S] used a simple ingenious
methnd to obtain reactance function even/
odd mode impedances of any lossless, lad-
der, sywnetrical two-port network. Their
'alternating pole' technigue was used to
synthesize lowpass filters baving quasi-
elliptic stopband response. With all
transmission zeros (TZ) at the same free
quency, save one at infinity, they obtained
skirt slopes much steeper than that of
Chebyshev approximation, but not as steep
as that of full elliptic, for a given stop-
band rejection level.
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This paper utilizes features from
these earlier works to obtain quasi-low-
pass, quasi-elliptic response in a sym-
metric filter that is easy to realize.

The response is equal ripple in the pass-
band from A to 1, and has one larger rip-
ple between zero and A as dictated by LAZ
approximation. The stopband has one TZ
at infinity, with all others distributed
in t pairs at finite, or infinite, freg's.

This presentation features a short
review of a computer prograr developed to
generate the LAZ function and set up the
reactance function for synthesis of even/
odd mode impedances. The affect of
varying electrical and physical paraweters
will be discussed and dimensional results
of varying A and stopband TZ positions
will be emphasized.

APPROXIMATION

Levy [3] shows that the Acheiser/Zolo-
tarev (LAZ) approximating function, f(X)=
P(U), in the insertion loss function, IL=
1+€*f*, is given for a 2N+1 branch lowpass
filter baving 2N+1 TZ's at fofinity by

£(X)= F(U)=cosh((N+‘/z) M(S%Mw%)) (1)

H is Jacobi's eta function: M=K(\,k) is an
incomplete elliptic integral of first kind
of modulus k, and U=K(A2,k). Z is related
to X via Z*=(xX*-1)/(x*~N) [3.6], X=F/Fc
is the real frequency variable normalized
to cutoff, Fc, at high end of the equal-
ripple passband, and A= sn{M) is normal-
ized low-frequency cutoff below which the
large ripple near de exceeds passband rip-
ple. Thus, the passband exists in Asxs1,
and in a small region around zero. From
(}), the characteristic equation, deter-
mining k, is (2N+1)M=K(1/2,%k), with K now
a complete elliptic integral of first kind.
This equation is nonlinear in N\ but ean be
solved iteratively for k and, thus, for
M=K/(20+1)=Mlc for series L-sbhunt C ladder
branches with TZ's at infinity. The Cheby-
shev function is a special case of f(X) for
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wvhich k=0, K=W2, M=(1/2)/(29+1), A=sin(M)
and H(M+U)/H(M-U)=sin(M+U)/sin(M-U)=X+VXT-T.

The function in (1) is now extended to
include P pairs of stopband TZ's along the
real frequency axis, X (Fig. 1); then

P .
£(X)=F()= cosh(( N+‘/.z)9.n(%(z%-utw)) +2.§'ln(£~§m—-_-:%)) (2)

2P Brune sections have been added to the
2N+1 LC ladder branches, for a total net-
work degree Nt=2N+1+44P: total distinct
branches, Nd=N+1+2P; and total number of
elerents, Ne=2N+1+6P. The values of Mi=
K(AZik) can differ for each Brune section
dependent upon the location of the stopband

T2's, Xi. The characteristic equation for

this function is (2N+1)Mlc+4*Z(Mi)=K(%k),

i=1, ... P, or

<2N+|>K<xk)+4§{1<(>\ Y-l k)}-l«k) (3)
! izl Xp-n T

Eqn (3) is solved iteratively by ap—
plying an aritbmetic-geometric-mean sub-
routine to evaluate the elliptic integrals,
thus obtaining modulus k¥ and values of Mlc
and Mi for LC elements and Brune sections,
resp. These values, placed in Egn (2) at
Nd distinct extrema frequencies in the pass-
band (where f(X) is pure imaginary), permit
solution for Nd coefficients of Chebyshev
polyoomials whose sum represents the LAZ
approximating function, £(X).

SYNTHESIS

Rhodes, et al, showed that N{LHP
zeros of 1+j€f(S/j)} =E(8)+0(S)=constant *
T{LHEP zeros of 1+Zoo, or 1+Zoe} for a
physically and electrically symretric net-
work. Thus, Zoe=E(S)/0(S), or 0(S)/E(S),
and vice~versa for Zoo. Synthesis is then
initiated on one of these reactance func-
tions once roots have been found for
1+3jef(S/j), their LHP terms selected and
multiplied out, and the resulting even/odd
parts associated with E(S) and 0(S), resp.

COMPUTER PROGRAM

Equations used in developrents de~
sacribed in the previous two sections were
programmed for desktop computer evaluation,
including response analyses of the resulting
theoretical designs. The quasi-lowpass
filter mndel was specialized to include any
odd or even number, N, of LC ladder branches
at filter input, followed by P Brune sec~-
tions (each consisting of a shunt C branch
followed by a parallel LC series branch),
with a single shunt C branch located at
center of the sywnetrical half network
(Fig. 2a). Input parameters to the program
are:

1. Nt= total degree of the quasi-lowpass
filter = 2N+1+4P
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2. P = nunber of distinct T2Z's @ finite
positive freq's s (Nt-1)/4

3. F\= cutoff freq (GHz) @ low end of
equal-ripple passband (A=F) /Fc)

4. Fe= cutoff freq (GHz) @ high end of
equal-ripple passband

5. VSWR= voltage standing wave ratio in
the equal-ripple passband

6. Fi= Brune TZ freq's (GHz) of finite
stopband rejection

Selection of Chebyshev approxiwation
can be made early in the program, permits
ting use of simpler calculations for this
case. A plotting subroutine allows re-
sponse selection from among S2lamp, $21
phase, S11 return loss, group delay, and
insertion loss.

COMPUTATIONAL/PHYSICAL INFERENCES

All responses shown in Figs. 3-5 were
made for an Nt = 13 branch symretrical
filter with passband ripple of 0.01 dB
(VSWR=1.10075). 1In Fig. 3, A=0.4, all
Fi=1.25, and response plots are made for
P=0, 1, 2, 3. 1In Fig. 4, P=3, all Fi=1.25,
and plots are made for A=0.4, 0.5, 0.55,
0.6. Fig. 5 gives a similar cross section
for P=3, same set of A's, but for Fi=1.1209,
1.2697, and 2.0992 from input toward cen-
ter of the filter, resulting in near-equal
stopband ripple in the 86-92 dB range.
Normalized computer "Gi" values are listed
in Table I, from input to center of filter,
for each of the cases in Figs. 3-5.

Several important suggestions can be
drawn from Table I. (1) From Fig. 3, the
two finite~resonant branches nearest the
center have nearly identical Gi values:

a slight variation in VSWR or F(1) of the
input-most resonmant branch would likely
result in their equality. (2) Frow Fig. 4,
near A=0.55, Gi data shows that either all
series inductors, or else all bridging
series capacitors, could be made identical
through slight variations in either VSWR,
equal Fi locations, or by slightly separ-
ating one Fi value from the other two.

(3) Gi values from Fig. 5 indicate that
equal inductors of about 0.65 can be ob-
tained for 0.55<A<0.6, with input inductor
of about 0.35, for slight variations in
VSWR,A , and/or Fi. 1In general, capacitor
values will increase and inductor values
vill decrease with increased A\. The flex-
ibility of being able to set lower cutoff,
N, and stopband poles, Fi, can result in
very complex filters of many branches
which are relatively easy to design and
realize.



EXAMPLE REALIZATION

Following suggestion (2) of the pre-
vious section, the value of A=0.5604282,
together with F(2)=1.2087 rather than 1.25,
vields the set of branch Gi values belaow
(shC, serL,shC,...,shC; input-center):

L L L L C L I
(,98430  0,58i74 1.32B2 0.62223 L0107 0.38178 2.3754

Note that two of the series L's are iden-
tical and the intermediate is only 6.95%
greater; i.e., in the total filter, four
inductors are identical and the other two
are nearly so. Further, ALL capacitors
bridging the series inductors are iden-
tical and of value C=1.10005. The re-
sulting guasi-lowpass filter has 0.01 dB
ripple in the normalized frequency range
0.5604«<X<1 and >67~dB rejection in the
stopband range 1.1<X<oo(Fig. 6). The 13-
branch filter is extremely easy to realize
since all series~branch elements are iden-
tical, or nearly so, and the only elewments
that vary are shunt C's. These shunt C's
are larger than a similar Rhodes/Alseyab
design, resulting in a much shorter filter.
A tubular realization of the C-array for
this quasi-lowpass design is very practi-
cal and easily converted to dimevnsions.
The relatively small equal, or near-equal
inductors can be housed external to the
tubular structure along the lengtb of the
filter (Fig. 7).

SUMMARY AND ACKNOWLEDGMENT

A nev guasi-lowpass, quasi-elliptic
symetric filter was developed theoretic-
ally using LAZ approximation. Gi values
obtained by varying number, P, and loca-
tion, Fi, of fivite TZ2's, and varyitg nor-
malized low-freq cutoff, N, permit easily-
constructed filters of high perforwance.
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