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ABSTRACT

Levy has shown that a functicm devel-
oped by Acheiser/Zolotarev (LAZ) can yield
a Iowpass response with we large reflec-
tion rippLe near dc. Rhodes and Alseyab

developed a novel method of obtaining
even/odd mode i~pedances of a symmetrical
network and applied their technique t~ low
pass filters with one transmission zero
(TZ) at infinity and all others at a spec-
ified stopband frequency.

This paper covbines outstanding fea-
tures of these references to present a new
quasi-lowpass, quasi-elliptic syvnetric
filter having LAZ passband response and
finite stopband TZ’S. Design advantages
are pointed out and filter realizations
are discussed.

INTRODUCTION

In the late 1800’s, Zolotarev[l] ex-
tended Chebyshev’s work on equal-ripple
functicms. In the 1920’s, Acheiser [2]
further devel~ped and reported u n ZolQ-
tarev’s work. rIn 1970, Levy [3,4 reviewed

these papers and applied them to approxi-
mation of quasi-lowpass filters having
vixed luvped/distributed sectims. Levy

collected, emunded on, and made the LAZ
approxi~ating function wore widely useful
to the engineering cowrunity.

In a separate investigation, Rhodes
and Alseyab[5] used a simple ingenious
weth~d t~ obtain reactance function even/
odd mode inv?edances of any Iossless, lad-
der, symmetrical two-port network. Their

‘alternating pole’ technique was used to
synthesize lowpass filters having quasi-
elliptic! stopband response. With all

transmission zeros (TZ) at the sane fre-
quency, save one at infinity, they obtained
skirt slopes %uch steeper than that of
Chebyshev apnroxivation, but not as steep
as that of full elliptic, for a given st~p-
band rejection level.

This
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paper utilizes features froq
these earlier works to obtain quasi-l~w-
pass, quasi-elliptic response in a s~-
~etric filter that is easy t~ realize.
The response is equal ripple in the pass-
band from A to 1, and has one larger rip-
ple between zero and ~ as dictated by LAZ
approximation. The stopband has one TZ
at infinity, with all others distributed
in 2 pai,rs at finite, or infinite, freq’s.

This presentation features a shqrt
review of a cmputer program developed to
generate the LAZ function and set up the
reactance function for synthesis of even/
odd mode impedances. The affect ~f
varying electrical and physical parameters
will be discussed and dimensional results
of varying A and stopband TZ positions
will be mphasized.

APPROXIMATION

Levy~] shows that the Acheiser/~lo-
tarev (LAz) approximating function, f(X)=
F(U), in the insertion loss function, IL=
1+ Gafz , is given for a 2N+1 branch lg~ass
filter having 21?+1 TZ’S at fnfinity by

-$(X)= ~(U) =cosh((t+%l b(#$#j) (1)

H is Jacobi’s eta function: M=K(A,k) is an
incanplete elliptic integral of first kind

of modulus k, and U~K(~Z,k). Z is related
to X via Z2=(Xa-1)/(Xa-~z) [3,6], X=F/Fc
is the real frequency variable nomalized
to cutoff, Fc, at high end of the equal-
ripple passband, and ~= sn(M) is n~~al-
ized low-frequency cutoff below which the
large ripple near dc exceeds passband rip-
ple. Thus, the passband exists in Asx~l,
and in a swal.1 region around zero.
(l), the characteristic equation, de~~r:
wining k, is (2N+l)M=K(W/2,k), with K now
a Complete elliptic integral of first kind.
This equation is nonlinear in A but can be
solved iteratively for k and, thus, for
M=K/(21J+l)=Mlc for series L-shunt C ladder
branches with T.Z’S at infinity. The Cheby-
shev functi~n is a special case ~f f(X) for
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which k=O, K=~2, M=(~/2)/(2N+l), ~=sin(M)
and H(M+U)/H(M-U )=sin(M+U) /sin(M-U)=X+~.

The function in (1) is now extended to
include P pairs of stopband TZ’S along the
real frequency axis, X (Fig. 1); then

2P Brune sections have been added to the
2N+1 LC ladder branches, for a t~tal net-
work degree Nt=2N+l+4P: total distinct
branches, Nd=N+l+2P; and total nuvber of
elements, Ne=2N+l+6P. The values of Mi=

K(~zi,k) can differ for each Brune section
dependent upon the l~cation of the stopband
TZ’S, Xi. The characteristic equation for

this function is (2N+l)Mlc+4*~(Mi)=K(k),
i=l, . . . P, or

Eqn (3) is solved iteratively by ap-
plying an arithmetic-geometric-mean sub-
routine to evaluate the elliptic integrals,
thus obtaining modulus k and values ~f MIC
and Mi for LC elewents and Brune sections,
re sp. These values, placed in 13qn (2) at
Nd distinct extrema frequencies in the pass-
band (where f(X) is pure imaginary), permit
solution fm Nd coefficients of Chebyshev
polynomials whose sum represents the LAZ
approximating function, f(X).

SYNTHESIS

Rhodes, et al, showed that ~{LHP

zeros of l+jef(S/j)}=E(S)+O(S)=constant *
~{LHP zeros of I+Zoo, or I+zoe} for a
physically and electrically sywnetric net-
vo rk. Thus, Zoe=E(S)\O(S), or O(S)/E(S),

and vice-versa for ZOO. Synthesis is then

initiated on one of these reactance func-
tions once roots have been found for
l+jef(S/j), their LHP terms selected and
multiplied out, and the resulting even/odd
parts associated with E(S) and O(S), resp.

COMPUTER PROGRAM

Equations used in developments de-
scribed in the previous two sections were
prograwned for desktop computer evaluation,
including res~nse analyses of the resulting
theoretical designs. ‘L%IS quasi-lowpass
filter medel was specialized to include any
odd or even number, N, of LC ladder branches
at filter input, f~llowed by P %rune sec-
tions (each consisting of a shunt C branch
followed by a parallel LC series branch),
with a single shunt C branch located at
center of the symmetrical half netwrk
(Fig. 2a). Input parameters to the program
are:

1. Nt= total degree of the quasi-lowpass
filter = 2N+1+4P

2. P=

3. Fx =

4. Fc=

number of distinct TZ’S @ finite
positive freq’sS(Nt-1)/4

cutoff freq (GHz) @ low end of
equal-ripple passband (~=Fx/Fc]

cutoff freq (GHz) @ hiah end of
equal-ripple passband -

5. VSWR= voltage standing wave ratio in
the equal-ripple passbwd

6. Fi= Brune TZ freq’s (GHz) of finite
stopband rejection

Selection of Chebyshev approximation
can be made early in the program, permit-
ting use of simpler calculations for this
case. A plotting subroutine all~ws re-
sponse selection from among S21amp, S21

phase, S11 return loss, group delay, and
insertion .10ss.

COMPUTATIONAL/PHYSICAL INFERENCES

All responses shown in Figs. 3-5 were
made for an Nt = 13 branch symmetrical
filter with passband ripple of 0.01 dB
(VSWR=1.1OO75). In Fig. 3,~=0.4, all
Fi=l.25, and response plots are made for
P=o, 1, 2, 3. In Fig. 4, P=3, all Fi=l.25,
and plots are made for ~=0.4, 0.5, 0.55,
0.6. Fig. 5 gives a similar cr~ss section
for P=3, sme set of ~’s, but for Fi=l.1209,

1.2697, and 2.0992 from input toward cen-
ter of the filter, resulting in near-equal
stopband ripple in the 86-92 dB range.
Normalized cowputer “Gi” values are listed
in ‘I’able I, from input to center of filter,
for each of the cases in Figs. 3-5.

Several important suggesti~ns can be
drawn from Table I. (1) From Fig. 3, the
two finite-re~nat branches nearest the
center have nearly identical Gi values:
a slight variation in VSWR or F(1) of the

input-most resonant branch v~uld likely

result in their equality. (2) From Fig. 4,
near A=().55, Gi data shows that either all
series inductors, or else all bridging
series capacitors, could be wade identical
through slight variations in either VSWR,
equal Fi locations, or by slightly separ-
ating one Fi value from the other tvo.
(3) Gi values from Fig. 5 indicate that
equal inductors of about 0.65 can be ob-
tained for 0.55<~<0.6, with input induct~r
of about 0.35, for s.light variations in
VSWR,A , and/or Fi. In general, capacitor
values will increase and inductor values
will decrease with increased ~. The flex-
ibility of being able to set lower cutoff,

& and stopband poles, Fi, can result in
very complex filters of many branches
which are relatively easy to design and
realize.
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EXAMPLE REALIZATION

F~lloving suggestion (2) of the pre-
vious section, the value of A=O.5604282,
together with F(2)=1.2087 rather than 1.25,
yields the set of branch Gi values below
(shC, serL,shC, . . ..shC. input-center):

L L. ,-. L : L L

0.55494 0.%’17B 1.52E2 c.im3 i,titu7 0.581?s .!.3”:54

Note that two of the series L’s are iden-
tical and the intezvediate is ~nly 6.95%
greater: i.e., in the total filter, four
inductors are identical and the other two
are nearly so. Further, ALL capacit~rs
bridging the series inductors are iden-
tical and of value c=1.1OOO5. The re-
sulting quasi-lomass filter has 0.01 dB
ripple in the n~rmalized frequency range
0.5604<xc1 and >67-dB rejection in the
stopband range l.l~X~@(Fig. 6). The 13-
branch filter is extremely easy to realize
since all series-branch elements are iden-
ticaL, ~r nearly so, and the only elewents
that vary are shunt C’s. These shunt C’s
are larger than a sivilar Rh~des/Alseyab
design, resulting in a wuch shorter filter.
A tubular realization of the C-array f~r
this quasi-lowpass design is very practi-
cal and easily converted to dimensions.
The relatively small equal, or near-equal
inductors can be housed externa”l t~ the
tubular structure along the length of the
filter (Fig. 7).

SUMMARY AND ACKNOWLEDGMENT

A new quasi-lowpass, quasi-elliptic
symwetric filter was developed theoretic-
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malized lov-freq cutoff, ~, pezwit easily-
cmstructed filters of high perfonpance.
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,Ilter real tzatz.n

132


